
Tedious Template Made Easy 
Cindy Stroupe 

 Inveresk Research 
 Cary, NC 

Abstract 
 
In the age of electronic submissions to the 
FDA, standardizing the look of the output 
across multiple ODS destinations has 
become more of a challenge.  SAS has 
given us a method of customizing our 
electronic output through the TEMPLATE 
procedure.  This procedure allows the 
customization of all aspects of the report 
from column headers to the font size of the 
footnotes.  However, when producing many 
files for the same document, creating a 
template for each file can be a tedious 
process.  The creation of a macro that calls 
in header and footnote information, sets a 
standard style across all columns, and 
outputs a similar looking file regardless of 
the output destination is an easy and 
innovative way to avoid the tedium. 
 
In this paper, an overview of the TEMPLATE 
procedure, with style options for customizing 
your output will be presented. Additionally, a 
macro for using your template for all files 
whether you have 1 column or 10 columns will 
be discussed.  This template macro can also be 
used across ODS output destinations so that 
your PDF files can look similar to your RTF 
files. 
 
Introduction 
 
Overview of the TEMPLATE procedure 
Proc TEMPLATE can be used to customize your 
report in two different areas: style and table. 
Style customization involves changing the way 
the standard SAS styles are displayed (i.e., 
background color, grid lines, font color, etc.).  In 
table customization you specify how you would 
like your data displayed (i.e., column 
justification, headers, footnotes, etc.). 
Here is the basic structure of the TEMPLATE 
procedure for table customization: 
 

proc template; 
 define table means.inveresk; 
   <options>; 
   
  mvar <var>; 
   nmvar <var>; 
  column <list of columns>; 
 
  header <list of table headers>; 
  footer <list of table footers>; 
 
 define table_header_1; 
    text “Title 1”; 
    just=left; 
    width=80; 
    start=col1; 
    end=col4; 
  end; 
 
  define table_footer_1; 
    text “Footnote 1”; 
    width=100; 
  end; 
 
   define col1; 
     width= 70; 
     header= ”Column 1”; 
   end; 
end; 
run; 
 
The first step in table customization is creating 
the table definition.  In the example above 
means.inveresk is the name to use when writing 
out the table. The first part of the table definition 
‘means’ is the template store in which to save 
the definition.  If the template store does not 
exist, SAS will create it.   
 
The next thing to do is define your options.  
Options in this section control page breaks, 
splitting of information across pages, column 
spacing, header and footer spacing, how to 
distribute extra space and justification of 
formatted variables.  How options affect the 
look of the output depends on the destination 



that you are using.  For example the underline 
and overline options only work in the printer 
destination and not in RTF. 
 
MVAR and NMVAR are used to define macro 
variables that you would like to use with your 
template.  The difference between MVAR and 
NMVAR is how ODS stores the information for 
reference when the variable is resolved.  
MVARs are stored as strings, while NMVARs 
are stored as numeric.  When you use the 
variables listed within this statement in your 
define statements, you do not need to use an 
ampersand.   
 
Within the TEMPLATE procedure, you must list 
the columns that you will be defining.  The 
columns will be displayed according to the order 
that is specified within this statement. An option 
called generic allows multiple columns within 
your report to use the same definition.  If all of 
the columns in your report can be the same size 
and the label can be used as the header than even 
if you have 10 columns, only one define column 
statement is required.  If you have 9 columns 
that can be the same and 1 column that needs a 
more specific definition than your column 
statement can have 2 columns. 
 
You must also list each header and footer that 
the table is to contain.  For each table header, 
and table footer you have, you will need to 
create a define statement. Some options that can 
be used with headers and footers are 
justification, width, and which columns for the 
headers and footers to span across. 
 
Creating a new style is not as easy as creating a 
table definition.  Below is an example of how to 
create a new style from an already existing style: 
 
proc template; 
define style rtftable; 
parent=styles.rtf; 
   replace fonts / 
      'TitleFont2' = ("Times",12pt,Bold Italic) 
      'TitleFont' = ("Times",13pt,Bold ) 
      'StrongFont' = ("Times",10pt,Bold) 
      'EmphasisFont' = ("Times",10pt,Italic) 
      'FixedEmphasisFont' = ("Courier New, Courier",9pt,Italic) 
      'FixedStrongFont' = ("Courier New, Courier",9pt,Bold) 
      'FixedHeadingFont' = ("Courier New, Courier",9pt,Bold) 
      'BatchFixedFont' = ("SAS Monospace, Courier New, 
Courier",6.7pt) 
      'FixedFont' = ("Courier New, Courier",9pt) 

      'headingEmphasisFont' = ("Times",11pt,Bold Italic) 
      'headingFont' = ("Times",11pt,Bold) 
      'docFont' = ("Times",10pt); 
 
     replace output/ 
      rules = ALL 
      cellpadding = 4pt 
      cellspacing = 0.25pt 
      borderwidth = void; 
 
   replace colors 
      "Abstract colors used in the default style" / 
      'headerfgemph' = #8B0000 
      'headerbgemph' = #ffffcc 
      'headerfgstrong' = #8B0000 
      'headerbgstrong' = #ffffcc 
      'headerfg' = #8B0000 
      'headerbg' = #ffffcc 
      'datafgemph' = black 
      'databgemph' = white 
      'datafgstrong' = black 
      'databgstrong' = white 
      'datafg' = black 
      'databg' = white 
      'batchbg' = color_list('bg') 
      'batchfg' = color_list('fg') 
      'tableborder' = color_list('fg') 
      'tablebg' = color_list('fg') 
      'notefg' = color_list('fg') 
      'notebg' = color_list('bg') 
      'bylinefg' = color_list('fg') 
      'bylinebg' = color_list('bg') 
      'captionfg' = color_list('fg') 
      'captionbg' = color_list('bg') 
      'proctitlefg' = color_list('fg') 
      'proctitlebg' = color_list('bg') 
      'titlefg' = #8B0000 
      'titlebg' = #ffffcc 
      'systitlefg' = color_list('fg') 
      'systitlebg' = color_list('bg') 
      'Conentryfg' = color_list('fg') 
      'Confolderfg' = color_list('fg') 
      'Contitlefg' = color_list('fg') 
      'link2' = color_list('link') 
      'link1' = color_list('link') 
      'contentfg' = color_list('fg') 
      'contentbg' = color_list('bg') 
      'docfg' = color_list('fg') 
      'docbg' = color_list('bg'); 
 
 
end; 
run; 
 
Like the table definition, you need to give the 
style you are creating a name.  You will then 
reference this style when you open your ODS 
destination.  When using the parent= option, 
your new style will contain all the aspects of the 
parent style except for the options that you 
change within the TEMPLATE procedure. 
 
In order to see all the individual style 
components that make a up a particular style, the 



following  code can be used to produce a list 
within the log file: 
 
proc template; 
source styles.rtf; 
end; 
run; 
 
The list contained within the log file will look 
similar to the code above where I changed some 
of the options.  Any of the components listed 
can be replaced.   
 
Styles can be used across all ODS destinations.  
Once you have created the style definition, you 
can use it for all the files that you are creating 
for that document, regardless of file size. 
 
Macro-tize It 
The process of making a table definition for 
each file can be a tedious process.  Using 
options available in the TEMPLATE procedure,  
do loops and a little trickery, a macro can be 
created that will create the definition. 
 
The first step is to create a dataset that contains 
only the columns that you want displayed.  This 
dataset should look exactly as you would like 
your electronic file to look.  The labels for the 
variables are going to be the column headers and 
the variables should be formatted. 
 
The next step is to create one macro variable that 
contains the number of columns in your dataset, 
one that contains the number of titles and one for 
the number of footnotes.  Additionally, one 
macro variable is needed for each title and 
footnote.  The macro variables for the titles and 
footnotes are going to be entered into the table 
definition as MVARs. 
 
The third step is to create your define statements 
for columns, headers, and footers.  If all headers 
and footers can be the same font and same 
justification, you can create one definition and 
place a do loop around it using the macro 
variables created in step two.  This also applies 
to the column definitions.   
 
The forth step is to create a style based on your 
needs.  If the standard SAS styles are 

appropriate for your output then this step can be 
skipped.   
 
The fifth and final step is to create your data 
component and output the object using a 
combination of set, file and print, and put 
statements.  This step binds your data to your 
template and style components and resolves 
your macro variables.  An example of these 
statements is: 
 
ods rtf body="c:\paper.rtf" style= rtftable; 
 
 data _null_; 
  set build.paper1; 
  file print ods=(template='means.inveresk' 
                  columns=(col1=col1 
col2=col2(generic=on) col2=col3(generic=on) 
col2=col4(generic=on) col2=col5(generic=on))); 
  put _ods_; 
  run; 
 ods rtf close; 
 
Conclusion 
Although the TEMPLATE procedure can be a 
tedious process, it can be made simple to fit 
individual need.  Through the macro process, 
one template can be used on multiple outputs 
across multiple ODS destinations. 
 
Contact Information 
Cindy Stroupe 
Inveresk Research Inc 
P.O. Box 13991 
Research Triangle Park, NC 27709 
Work Phone: (919) 462-2670 
Fax: (919) 462-2773 
Email: cstroupe@inveresk.com  
 
 
 


